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Abstract 

Lipman Bets' universal Teichmtiller space, classically denoted by T(1), plays a significant 
role in Teichmfiller theory, because all the Teichm~iller spaces T(G) of Fuchsian groups G can be 
embedded into it as complex submanifolds. Recently, T( 1 ) has also become an object of intensive 
study in physics, because it is a promising geometric environment for a non-perturbative version 
of bosonic string theory. We provide a non-technical survey of what is currently known about the 
geometry of T(1) and what is conjectured about its physical meaning. Our bibliography should 
be rather comprehensive, but we apologize for any unjustified omissions. 
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1. Some classes of homeomorphisms 

Let C = C U {e~} be the extended complex plane. We shall denote the unit disc 

{z E C :  Izl < 1 } b y  A, the unit sphere {z E C . :  I z I = l }  by S 1, and the exterior of  

the unit disc {z E C :  Izl > l } : C \ ( a u s  1) by A*. 
A homeomorphism w : D --~ w ( D )  between domains in C. is quasiconformal (qc) 

[3, 50] if and only if w has locally integrable generalized derivatives satisfying almost 

everywhere on D the Beltrami equation 

w~(Z)  =At(Z)Wz(Z)  (1.1) 

for some measurable complex function At on D called the Beltrami differential with 

esssup IAt(z)l ; IIAtll~ < 1. (1.2) 
zCD 
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A solution of ( 1.1 ) is called tz-conformal; in the special case I1~11~ = 0, w is conformal, 
i.e., biholomorphic. 

Geometrically, quasiconformality means that f maps any infinitesimally small circle to 

an ellipse whose ratio of the major axis to the minor axis is uniformly bounded by some 
number K < c¢ called the maximal dilatation. Such an f is called K-quasiconformal. 
The relationship between the number K and the function /x, also called the complex 
dilatation of f ,  is as follows: 

l + I (z)l (I.3) K = sup 
1 -I (z)l 

Denote the space of Beltrami differentials L ~ ( D ) 1 ;  it is the open unit ball in the 
complex Banach space L ~ ( D )  of essentially bounded functions in D. The existence 

and uniqueness, up to three prescribed values, of solutions for the Eq. (1.1) with an 
arbitrary Beltrami differential is guaranteed by a fundamental theorem due to Gauss, 
Morrey, Bojarski [ 14], and Ahlfors and Bers [4]. In this survey, we omit most proofs, 

but many of the deeper aspects of the theory depend on careful analysis of the solutions 
of (1.1). 

Let us think of the upper half-plane as a hemisphere of the Riemann sphere C. = I?Ic. 

An increasing self-homeomorphism f of the real axis N is called quasisymmetric (qs) 
if it can be extended to a quasiconformal mapping of the upper half-plane ]HI that fixes 

the point at infinity. Beurling and Ahlfors [ 13] showed that f is quasisymmetric, if for 
some constant K, 1 _< K < oc, 

1 f ( x  -4- t)  -- f ( x )  
- -  < < K ( 1 . 4 )  
K -  f ( x ) - f ( x - t )  - 

for all real x and positive t. More precisely, such an f is called K-quasisymmetric 
(K-qs).  

We may always switch from H to A via the Cayley transform z H (z - i ) / ( z  + i), 
which maps (0, 1, oo) to ( - 1 , - i ,  1), respectively. The explicit identification of R to 
S l is given by 

x = - cot 10, or, e i  0 = x - i 
x + i "  (1.5) 

A continuous vector field u(e iO) 0/c90 on S 1 becomes, on the real line, F(x)  O/Ox with 

( x - i )  
F ( x ) = ½ ( x  2 + l ) u  ~ . (1.6) 

Conversely, 

2F (x )  _ 2 sin 2 l0  F(  - cot ½0). (1.7) u( ei°) - x 2+1  

In particular, if u vanishes at ( - 1 ,  - i ,  1), we see that 

F(x )  
F ( 0 ) = F ( 1 ) = 0  and x 2 + l  - - -+0asx---~c¢.  (1.8) 
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In analogy with the half-space model, an orientation-preserving self-homeomorphism 

f of the unit circle S 1 is called quasisymmetric (qs) if it can be extended to a quasi- 

conformal (qc) mapping of the unit disc A. In the disc model, the K-qs condition is 
most conveniently given in terms of the cross ratio 

Z4 - -  Zl  Z3 - -  Z2 
(zl, z2, z3, z4) - - -  (1.9) 

24 - -  Z2 Z3 - -  Z l "  

We need to require that 

1 1 
- -  < ( f ( z l ) , f ( z e )  f ( z 3 ) , f ( z 4 ) )  < 1 - - -  (1.10) 
2K - ' - 2K 

whenever (zl,  z2, z3, z4) = 1//2. The explicit constant K may not be the same in (1.3), 
(1.4) and (1.10), but this is irrelevant for our present purposes. Again, a homeomor- 

phism f is qs if it is K-qs for some K. In the sequel, we can equivalently deal with 
quasisymmetric maps on S 1 or IR, whichever seems to be more convenient, and we 

sometimes use the symbol X to designate either of these spaces. We shall then denote 
the group of qs maps of the space X by QS(X).  

In the disc model, the M6bius group M6b(S 1 ) consists of the boundary transfor- 

mations induced by the conformal automorphisms of A, the M6bius transformations 

A : A - - - ~ A ,  

z - - a  
Az = A - -  (1.11) 

1 - f i z  

with z c A, IA[ = 1 and lal < 1. The M6bius group is a three-dimensional subgroup of 

QS(S l ) isomorphic to PSU( 1, 1; C).  
Moreover, Mtib(S 1 ) acts on the left on both QS(S I ) and QC(A),  the space of quasi- 

conformal self-mappings of A. To see this, just notice that the cross ratio (1.9) is 

M6bius-invariant. 
In the half-space model, the M6bius group is PSL(2; R),  the group of maps of the 

form 

az + b  
f ( z )  - - -  (1.12) 

cz + d  

with real coefficients a, b, c, d satisfying ad - bc = 1. 

M6bius transformations can also be described as the solutions of the differential 

equation 

S f  =O, (1.13) 

where S is the Schwarzian derivative, 

i 
S f  = \ f ,  ] - ~  k , f '  J " (1.14) 

Direct computation gives the transformation rule 

S ( f  o g) = ( S f  o g) (gt)2 4- Sg, (1.15) 
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SO that precomposition by a M6bius transformation f leaves the Schwarzian derivative 
of a smooth function g invariant. The Schwarzian derivative will later show up in various 
contexts. 

The extension of a qs map to a qc map is by no means unique. The extension operator 
constructed by Beurling and Ahlfors [ 14], who worked in the half-space model, has 
the drawback that it is not conformally natural. Working in the disc model, Tukia [80] 
and later also Douady and Earle [27] defined a conformally natural extension operator 
E : QS(S 1) --~ QC(A) which satisfies the required naturality condition E ( A  o f )  = 

A o E ( f )  for any A C M6b(S l) and f C QS(S 1 ). A simpler construction with refined 
estimates for the maximal dilatation has been given by Partyka [63]. A conformally 
natural extension operator is not unique either: another one /~ is readily obtained by 

putt ing/~f = ( E ( f - I )  ) - l  
In particular, if f is a diffeomorphism on S 1, then it surely can be continued as a 

diffeomorphism, afortiori,  as a qc map, to the closed unit disc. Hence, smooth implies 
qs. We shall denote the group of C °o orientation-preserving diffeomorphisms of X by 
Diff(X). 

The following chain of subgroup inclusions summarizes the most important classes 
of homeomorphisms: 

M6b(X) < Diff(X) < QS(X) < Homeo(X). (1.16) 

Various other interesting spaces of homeomorphisms (real-analytic, H61der, symmetric 
[34] .... ) could be designated. For our present purposes, let us introduce, following 
Zygmund [87], the A* class 

A* (R) = { F : • ~ ~ [ F is continuous, satisfying normalizations (1.8) ; and, 

IF(x  + t) + F ( x  - t) - 2F(x)]  < Clt ] for some constant C, 

for all x and t real.} 

Then A*(~)  is a non-separable Banach space under the Zygmund norm, which equals, 
by definition, the best constant C for F. Namely, 

IIFII = SUPx,, F(x + t) + F(xt - t) - 2F(x) I (1.17) 

The interest of the Zygmund class A * ( R )  lies in the fact that, according to Reimann 
[ 72], the Zygmund class comprises precisely the vector fields for quasisymmetric flows 
on R. 

2. Geometric quantization of bosonic string theory 

We shall now discuss some physics as a motivation for further mathematical develop- 
ments. Bosonic string theory [26, 39, 60] is a proposal of unified field theory where the 
elementary particles called bosons are supposed to appear as one-dimensional extended 
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objects on the Planck scale; hence, topologically they look like either R (open string) 

or S 1 (closed string). We shall work with closed strings. The string hypothesis intro- 

duces a new symmetry group into physics, the group Homeo(S  1 ), as this is the internal 
symmetry group of  a closed string. Non-perturbative bosonic string theory would be 
based, ideally at least, on the group Homeo(S1) .  We would like to geometrize this 

group, but as it seems to be intractable, in practice, we need to content ourselves with 
some subgroup. 

There is a standard procedure in physics called geometric quantization [84] to pass 

from a classical system to a quantum system. In the classical system, the observables 
are functions f in the phase space which is a smooth manifold M 2n endowed with a 
symplectic form to; in the corresponding quantum system the observables need to be 

converted into operators Tf acting in some Hilbert space in such a way that Poisson 
brackets of  functions are converted into Lie brackets of  operators 

T{I,.I2 } = [TI,,Tf2 ]. (2.1) 

The standard way to achieve this is to produce a Hermitian line bundle £ over M with a 

Hermitian connection V whose curvature equals to. £ exists if and only if to represents 
an integral cohomology class. Then the sought-for operators will be given by 

Tf = - iVx ,  + f (2.2) 

where XU is the Hamiltonian vector field corresponding to the observable f by the 

formula Xf  = -to-1 (df, .) .  The operators Tf act in the Hilbert space of square-integrable 
sections of  12 with respect to the canonical volume form to"/n! of (M, to). In fact, up 
to this point, we have only achieved prequantization while the difficult Dirac problem 
concerning the irreducibility of  the representation f ~-+ TU remains to be settled. This 
final step in the geometric quantization programme can often be achieved by introducing 

a Kahler structure on the phase space and restricting to the holomorphic square-integrable 

sections. 
Geometric quantization of  string theory involves many unsolved problems which we 

shall discuss in due course later on. In any case, to get started we could try to produce 
a symplectic structure on H o m e o ( S  1 ) or, more modestly, on Diff(S 1 ). The Lie algebra 
of  the infinite-dimensional Lie group Diff(S 1 ) is the algebra Vect(S l ) of  smooth vector 

fields on the circle. These have Fourier modes labeled by the ring of  integers Z, so that 
Vect(S 1 ) formally behaves like an odd-dimensional space; hence, certainly H o m e o ( S  1 ) 

or Diff (S 1 ) as such cannot carry a symplectic structure. Heuristically, an odd number of  

degrees of  freedom need to be removed before we can expect a symplectic phase space. 
The simplest idea is to remove the Fourier zero mode by quotienting away the group 

of  rotations Rot (S  ~ ), or the circle itself. The resulting moduli space is denoted by 

N = Dif f (S  1 ) / Rot (S  1 ). (2.3) 

Bowick and Rajeev [ 17, 19-22] discovered that the space N carries, indeed, the struc- 
ture of  an infinite-dimensional K~ihler manifold. We shall explicit this K~J.hler structure 
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later on, but implicitly, this phenomenon may be understood as an infinite-dimensional 
analogue of the finite-dimensional standard argument of Kirillov, Kostant, and Souriau 
[46], which produces a symplectic structure in the coadjoint orbit space of a Lie group 
acting on the dual of its Lie algebra. 

Moreover, there exists another obvious "even-dimensional" quotient space, namely 

M = Diff( S 1 ) /M6b ( S 1 ). (2.4) 

Then N is a holomorphic disc bundle over M. The Kirillov-Kostant-Souriau argument 
applies to M as well, and, indeed, Bakas [9] and Witten [83] have proved that the dual 
of the Lie algebra of Diff(X) admits no other coadjoint actions by non-trivial subgroups 
of Diff(X). Hence, in principle, we can choose either N or M as the underlying phase 
space of our geometric quantization scheme. We shall see that M is far more interesting. 

We shall not review the method of coadjoint orbits, but let us mention that the dual 
of Vect(S l ) can be identified with the space of Hill operators H, acting on smooth 
functions on the circle, 

H, = (d /dz )  2 + u ( z ) ,  (2.5) 

where u is any smooth function on the circle [9]. Then, under arbitrary smooth 
reparametrizations z --* f ( z  ), the Hill operators transform as follows: 

Hu --~ f,---Z -~z f,3 dz + u ( f ( z ) ) .  (2.6) 

Explicit calculation shows that (2.6) is equivalent to 

Hu ~ M ( f  '-3/2) Ha M ( f ' - l / 2 ) ,  (2.7) 

where M(. )  is the multiplication operator and Ha = (d /dz )  2 + fi(z ) is given by 

1 S f ( z ) ,  (2.8) Ha(z)  = (d /dz )  2 + f ' 2 u ( f ( z )  ) + 

where S is the Schwarzian derivative (Segal [74] ). 

3. Universal Teichmiiller space T(1) 

Our fundamental sequence of inclusions (1.16) can be quotiented into 

M = D i f f ( X ) / M 6 b ( X )  C Q S ( X ) / M 6 b ( X )  C nomeo(X) /MiSb(X) .  (3.1) 

Here we recognize a classical object; namely, 

T(1)  := QS(X) /MiSb(X)  (3.2) 

is the universal Teichmiiller space that Bers introduced in [ 10, 11 ]. Equivalently, we 
may think of T( 1 ) as the space of quasisymmetric homeomorphisms of the circle, say, 
which have three prescribed values. We stipulate the three points + l  and - i  to be 
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fixed. The infinite-dimensional space T(1)  is universal in the sense that it contains as 

subspaces all the other TeichmiJller spaces whose definition we briefly recall next [ 13, 
43, 49, 54, 78]. 

Let G be a Fuchsian group, i.e., a discrete subgroup of M6b(X).  The Teichmiiller 

space T(G)  is defined by 

T(G)  = { [ f ]  E T ( 1 ) l f o y o f - 1  EM6b(X)  for a l l y E G } .  (3.3) 

These spaces are partially ordered: G < G ~ clearly implies T(G ~) C T(G) ;  in particular, 
all the Teichmiiller spaces T(G) are contained in the universal one. (The "1" in the 

notation T ( I )  refers to the trivial group.) Moreover, the inclusion T(G) C T ( I )  turns 

out to be a holomorphic embedding. 
Another approach to Teichmiiller theory is global analytic. The Teichmiiller space 

T(27) of a Riemann surface 2; is defined as the parametrization space of its complex 
structures up to isotopy. A complex structure may be given as a smooth section J of the 

endomorphism bundle of the tangent bundle of the surface 2? which is an anti-involution, 

i.e., 

j2 = _ id. (3.4) 

Denote the space of all complex structures J by A. Of course, Diff(2;) acts on ,,4 via 
the pull-back operation. In the case of a compact orientable surface of genus > 1, the 

Teichmiiller space T(2?) simply equals the moduli space .A/Diff0(2?) where Diff 0 (2?) is 
the identity component of Diff(2?). This simple global analytic definition is powerfully 

exploited in the treatise [78]. 
In the above set-up, we can easily define a K~ihler structure on T(27) = .A/Diff0(2?). 

By differentiating the relation (3.4), we see that the tangent vectors J of T(27) at J 
anticommute with J under composition of endomorphisms. Hence, the formula 

o9(,]1, ,]2) = [ t r ( J  o Jl o -]2) (3.5) 

.s 

defines a 2-form on ,,4. The integration is with respect to the hyperbolic metric uniquely 

corresponding to J. This correspondence is natural with respect to the action of Diff(2;) ; 

afortiori, with respect to the action of the subgroup Diff 0 (27), so it passes to the quotient. 
Moreover, it is straightforward to check that the resulting 2-form on the Teichmtiller 

space T(X) is non-degenerate and closed; hence, a K~ihler form. This K~hler form (up 

to a constant multiple) is the classical Weil-Petersson Kahler 2-form. 
If the surface 2? is uniformized by a Fuchsian group G, then the two definitions 

coincide: 

27 = X /G ~ T(2;) = T(G) .  (3.6) 

This is a theorem of Tukia [80], which Douady and Earle [27] reproved using their 

conformally natural extension operator. 
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We shall briefly indicate how T ( 2 )  and T(G) are related to each other. For this 

purpose, we need to discuss two pertinent classes of  solutions for the Beltrami Equation 

(1.1) corresponding to specially chosen Beltrami differentials IX C L ~ (C) i .  

The  real-analyt ic  w~,-theory: By applying the fundamental existence and uniqueness 

theorem to the Beltrami differential which is IX on A and is extended to A* by reflection 

[/2( 1 /g)  = IX(z)Z2/Z 2 f o r  z E d] ,  one obtains the quasiconformal homeomorphism w~ 

of  C which is Ix-conforrnal in A, fixes + l  and - i ,  and keeps d and A* both invariant. 

The complex-analyt ic  wU-theory: By applying the existence and uniqueness theorem 

to the Beltrami differential which is IX on A and zero on A*, one obtains the quasi- 

conformal homeomorphism w ~' on C, fixing 0, l,  c~, which is Ix-conformal on d and 

conformal on d*. 

It is a fact that wu depends only real-analytically on IX, whereas w u depends complex- 

analytically on IX. The latter extension is so useful that it carries the name "Bers' trick". 

Let us now try to make (3.6) look a little more plausible. First of  all, a Beltrami 

differential IX is G-equivariant, if it is compatible with the action of  G on ,5; more 

precisely, this leads to the requirement 

I x ( y z ) ~ / ( z ) / y ' ( z )  = I x ( z ) ,  (3.7) 

which should hold almost everywhere on A for every y C G. Let us denote the space 

of  G-compatible Beltrami differentials L ~ ( G ) .  An alternative description of  T(G) can 

now be given as 

T(G) = L ~ ( G ) / ~ ,  (3.8) 

where Ix ~ z, if and only if wu = w~ on Od = S l , which happens if and only if w u = w ~ 
on A* U S 1 . 

Now, if Ix is G-invariant, then wu conjugates G to another Fuchsian group 

Gu = w~,GwS I. (3.9) 

The equivalence class of  Ix in T(G) represents the Riemann surface X~z = A/G~,. 

In the reverse direction, one can use w u to conjugate G to a quasi-Fuchsian group 

G ~ = w l ~ G ( w l ~ )  - 1  , (3.10) 

so that G u acts discontinuously on the quasidisc AU = wJZ(d) and its exterior d *~z = 
wU(A*). Now, the Riemann surface X~, is represented by AU/G u (whereas A*U/G u is 
the fixed Riemann surface A*/G, since w ~ is conformal on A*). 

4. Models of T(1) 

We can think about T(1)  m several ways. The following three classical models of  
T(1)  are the best-known: 

(a) the real-analytic model consisting of  all M6bius-norrnalized quasisymmetric home- 
omorphisms of  the unit circle S 1 ; 
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(a ~) the geometric model consisting of  all M6bius-normalized quasicircles, i.e., all 

images of  the standard circle under a global quasiconformal map that fixes the 

points :51 and - i ;  
(b)  the complex-analytic model comprising all functions which fix 0, 1, oo, which are 

univalent on the exterior of  the unit disc A* and which allow quasiconformal 
extension to the whole Riemann sphere. 

For yet other models, see [45, 47].  

Specializing (3.8) ,  we may also define the universal Teichmtiller space as a quotient 

of  Beltrami differentials: 

T (1 )  = L ~ ( A ) ~ / ~ ,  (4.1) 

where/ . t  ,-, v if and only if w~ = w~, on 0A = S l, or equivalently, if and only if w u and 

w ~ coincide on A* U S I. 

We let 

¢/, : L ~ ( A ) I  > T ( I )  (4.2) 

denote the quotient projection. T( 1 ) inherits its canonical structure as a complex Banach 

manifold from the complex structure of  L ~ ( A ) j ;  indeed, ¢b becomes a holomorphic 

submersion. 
The derivative of  q' a t / . t  = 0: 

d 0 ~ :  L ~ ( A )  , ToT(1) ,  (4.3) 

is a complex-linear surjection whose kernel is the space N of  "infinitesimally trivial 

Beltrami differentials" 

where A(A)  is the Banach space of L 1 integrable holomorphic functions on the disc. 

Thus, the tangent space at the origin 0 = 45(0) of  T(1 )  is L °° (A) /N .  

It is now clear that to # E L ~ ( A ) ~  we can associate the quasisymmetric homeomor-  

phism 

f u  = Wuls' (4.5) 

as representing the Teichmiiller point [/.t] in the real-analytic model (a) of  T( 1 ). Indeed 

T( 1 )¢,,) is the homogeneous space: 

T ( 1 ) (a) = QS (S ~ ) / M 6 b  ( S ~ ) 

= {quasisymmetric homeomorphisms of S 1 fixing :L 1 and - i}. 

In the geometric model (a ¢) of  T (1 ) ,  we think of  the points of  T(1 )  as the images 

of  S 1 under w u. 
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There is a plethora of characterizations of the quasidiscs and their boundaries, the 
quasicircles [37]. Perhaps the most elegant is Ahlfors' condition [2], which identifies 
quasicircles among those Jordan curves of the complex plane which pass through ~ (this 

can be achieved by a M6bius transformation): Such a Jordan curve C is a quasicircle 
if and only if there is a constant M such that for any three distinct points a, b, c on C 

with b between a and c 

Ib - a[ < MIc - al. (4.6) 

A generic quasidisc turns out to be a fractal object. 

Alternatively, [/z] is represented by the univalent function 

f ~  = WUla. (4.7) 

on A*, in the complex-analytic model (b) of T(1).  A more natural choice of the 
univalent function representing [/z] is to use a different normalization for the solution 
w u (since we have the freedom to post-compose by a MSbius transformation). In fact, 
let 

W ~ = M ~' o w ~' , (4.8) 

where M u is the unique MSbius transformation so that the univalent function (repre- 

senting [/x] ): 

F u = W~l,a. (4.9) 

has the properties: 

(i) F u has a simple pole of residue 1 at c~ ; 

(i i)  ( F U ( z )  - z )  - - * O a s  z - - > ~ .  

Thus, the expansion of F u in A* is of the form: 

bl b2 b3 
FU(z)  = z + - -  + + + (4.10) 

z • . . . .  

Let us note that the original (0, 1, ~ fixing) normalization gives an expansion of the 
form: 

f ~ ( z ) = z  ( a + f l l  + ~2 f13 ) - ~  ~ - y + ~ - T + . . . .  (4.11) 

and the Mt~bius transformation M ~ must be M ~ (w) = w / a -  ~1/a. Since (a,/~1,/32 .... ) 
depend holomorphically on/x,  we see that (bl,  bz, b3 .... ) also depend holomorphically 
on/x.  Thus, our complex-analytic version of T(1)  is: 

T(1)  (b) = { Univalent functions in A* with power series of the form (4.10), 

allowing quasiconformal extension to the whole plane}. 

In the general theory of univalent functions, the functions of the type (4.10) are known 
as the class Z [28]. It is not difficult to compute that the area of the corresponding 
quasidisc is 
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A =Tr 1 -  nlb.I 2 • (4.12) 
n = l  

Of course, this is non-negative so that we deduce the classical Area Theorem [ 28, 49, 
54] about the coefficients bn in the class 22 

OG 

~-~n lb.[ 2 _< 1. (4.13) 
I1=1 

We may think of the coefficients b, as coordinates on T(1).  A refinement of the 
Area Theorem shows that b, = O(n -c) with c = 0.509... [23], but the coefficients 

in the class 2; still retain many mysteries. It is known that Ib~l _< 1, Ib21 _< ~, and 

]b31 _< ½ + e -6. These bounds are sharp but there is no "Bieberbach conjecture" about 
the general sharp upper bound for Ibnl . Nonetheless, we can think of T( 1 ) as a space 
of certain sequences (bl ,  b2, b3 . . . .  ). 

5. The physicist's wish-list 

In this chapter, we explain why the universal property of T( 1 ) makes it an attractive 
object of study from the point of view of non-perturbative bosonic string theory, whose 
precise geometric formulation, as we should stress, is unknown. First we shall review in 

simple non-technical terms the basic ideas of the prevailing perturbative bosonic string 
theory to the benefit of the reader who is not familiar with the physics literature. 

The central issue in any quantum field theory is to evaluate the partition function Z, 
which gives the quantum-mechanical probability amplitudes of the system under study. 

Feynman introduced in 1948 a quantization scheme where Z is computed as a path 
integral over the space of paths representing the possible worldlines of elementary par- 

ticles. The possible spacetime trajectories of a propagating pointlike elementary particle 

are one-dimensional paths, whereas a propagating bosonic string, or a one-dimensional 
extended object, sweeps out two-dimensional world-surfaces. A natural generalization 
of the Feynman path integral then is an integral over all possible world-sheets. As a 
first approximation, one can limit to deal with compact orientable surfaces which are 

topologically classified by the genus T = 0, 1,2 . . . .  The emergence of a handle in the 
propagation pattern corresponds to the breaking apart of two strings; correspondingly, 

the annihilation of two strings closes a handle. In reality, one should also take into 
account the degenerate situations where, e.g., a handle shrinks to a node. 

While the topological classification of compact orientable surfaces is easily under- 
stood, their geometrical diversity is more intricate. The possible geometries are given as 
the infinite-dimensional cone A4 of all Riemannian metrics g of the underlying topo- 
logical surface. This space, however, is physically redundant. The physically meaningful 
space in each genus y is the parametrization space of conformal structures, or, the 
Riemann moduli space A4~. It is well-known that .A40 is a point, All  = H/PSL(2;  Z),  
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while .h//~, is an orbifold of dimension 6y - 6. The Riemann moduli space of a surface 

admits as its covering space the Teichmiiller space T(2) ,  the parametrization space 
of conformal structures up to isotopy. Conformal structures are the relevant intrinsic 
geometries of the surface ~, so one should develop an integration scheme over the 
moduli. Some explicit results are known, e.g., the volumes of some Teichmiiller spaces 
in the Weil-Petersson metric (Penner [66] ). 

We think of the string propagating in a fixed background space that, as a first ap- 

proximation, can be taken to be the flat Minkowski space of some dimension D. We 

also need to take into account the extrinsic geometries of the string; in other words, 

the various ways in which a string may be embedded into the ambient spacetime. An 

extrinsic metric is induced on the surface 2: as a pull-back of the flat background metric 
via an embedding s. Thus we should also integrate over all embeddings s : 2 ~ ] ~ O - l , l .  

Consequently, we should be looking for the partition function in the form of a 
perturbative series 

O O  z=Zfe-S. 
y--O AI r 

(5.1) 

Here S = S(g, s) is the Polyakov energy, i.e., the Dirichlet energy of an arbitrary 

embedding of the propagating string into the background spacetime. The integration in 
(5.1) is with respect to the so-called Polyakov measure over the moduli space A//z, 

of each genus 3/ and also over the infinite-dimensional space of all embeddings s. 
Polyakov discovered in 1981 that this measure exhibits conformal anomaly cancellation 
in the critical spacetime dimension D = 26. 

Perturbative bosonic string theory suffers from several drawbacks. First of all, the 
summation over the genus in (5.1) is well-known to be divergent [40, 66]. Secondly, 

the need to prescribe the topology and geometry of the background spacetime is philo- 
sophically unsatisfactory. The spacetime should rather arise as an excitation. So far, 
merely the critical dimension D = 26 arises as a constraint. Thirdly, the critical dimen- 

sion is outlandish, be it lowered to the slightly more palatable D = 10 in superstring 
theory [26, 39] which incorporates fermions as well. 

Perhaps these drawbacks indicate that we are just scratching the surface of some 

underlying intrinsic geometric principle that would imply more stringent conditions on 
the global properties of spacetime. The proper geometric environment of bosonic ,~. ' ,g 
theory should be some kind of "universal Riemann moduli space" which would compr'se 
the moduli of surfaces with an arbitrary number of handles, cusps, boundary components, 
and nodes. One heuristic candidate for such an object has been put forward by Friedan 
and Shenker [32, 33], but it is not mathematically well-established. 

The only classically known universal moduli space in mathematics literature is Bers' 
universal Teichmiiller space T(1) ,  although no viable notion of universal Riemann 
moduli space corresponds to it. The potential physical interpretation of T(1)  as a 
superspace, in the sense of DeWitt and Wheeler, was discussed by Bers already in [ 12]. 
From the modern point of view, T( 1 ) is bound to be a highly relevant object, as it plays 
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a role in both of the existing approaches to the quantization of bosonic strings: 
(i) From the point of view of perturbative bosonic string theory, T( 1 ) contains as 

subspaces all the finite-dimensional TeichmiJller spaces corresponding to various 
perturbative orders. 

(ii) From the point of view of non-perturbative bosonic string theory, T( 1 ) is contained 
in the space Homeo(S 1 ) /M6b(S  l ) which, in principle, should be the ultimate arena 
of the geometric quantization of bosonic string theory. 

Perhaps the perturbative series (5.1) ought to be replaced by a single integral over 
the universal Teichmiiller space 

Z-~ / e -S. 

T(I) 

(5.2) 

Some preliminary speculations about how the measure in T( 1 ) should look like in terms 
of the coefficients b n appear in [42], but no actual progress has been recorded. 

The physicists' wish-list for mathematicians to achieve the geometric quantization of 
T(1) includes (at least) the following items [67]: 
( 1 ) Universal geometry: T( 1 ) should be a K~hler manifold whose Kahler form w pulls 

back to the Weil-Petersson form on each classical Teichmiiller space T(G). 
(2) Universal topology: There should be an action by a "universal mapping class group" 

on T( 1 ) which pulls back to each T(G). 
(3) Universal line bundle: There should exist a Hermitian line bundle E over T ( I )  

with a connection whose curvature equals w. 
(4) Universal measure: T( 1 ) should carry a "Haar measure" with respect to which the 

classical locus, or the union of the images of the embeddings of all the T(G) ,  is 
dense and of measure zero in T( 1 ). 

(5) Universal action principle: There should exist a scalar-valued function S ("universal 
Polyakov energy") whose gradient flow should have a superset of the classical locus 
as attracting fixed points. This function should coincide with a K~ihler potential of 

the universal Weil-Petersson K~ihler form. 
We shall review the above-listed items emphasizing the established aspects of the 

theory. The current state of art seems to be that the item (1) is well-established for 
the quotient space Diff(SI)/MiSb(S l) while some evidence of its validity has been 
advanced in a suitable subspace of T( 1 ) (Nag and Sullivan [58] ) and, from a different 
point of view, even in Homeo(Sl) /M6b(S 1 ) (Penner [67] ). 

The solution to the item (2) has been claimed by Penner [67], but the discussion of 
his graph theoretic methods would bring us too far. Ratiu and Todorov [71] suggested 
that Quillen's determinant line bundle construction [70] applied to a family of Cauchy- 
Riemann operators parametrized by M could solve the item (3). However, one sees 
with difficulty how Quillen's construction could be extended to T( 1 ). Possibly, ordinary 
calculus ought to be replaced by "quantum calculus" in the sense of Alain Connes' 

non-commutative geometry [24]. 
The item (4) has been preliminarily discussed by Wiesbrock [81, 82] and by Nag and 
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Sullivan [58]. Some time ago, we suggested in [65] that the quasidisc area functional A 
on T( 1 ) might serve as a heuristic candidate for the universal action principle required in 
item (5),  because the quadratic expression in (4.12) can be interpreted as the Dirichlet 
energy of the harmonic extension in A defined by the boundary values of the univalent 
function F ~ in (4.10). However, we have not been able to compare the functional A 
with the Polyakov energy of each genus. 

We have not yet pointed out the existence of a natural distance function on T(1).  
Denote by K(h)  the minimal dilatation of a quasiconformal self-mapping of ,5 with the 
same boundary values as h. Then the Teichmiiller metric on T( 1 ) is defined by 

dl ( f ,g )  = ½ 1 o g g ( f o g - l ) ,  [ f ] , [ g ]  C T(1).  (5.3) 

Obviously, the value dl ( f ,g)  does not change if we replace f by A o f and g by Bog ,  
where A and B are conformal mappings, and hence the Teichmiiller metric is well- 
defined. Minimizing the dilatation only over G-compatible quasiconformal mappings, 
one analogously obtains a Teichmtiller metric da for each T(G). On the other hand, 
the metric space ( T ( 1 ) , d l )  induces a metric space structure to each subspace T(G). 
The TeichmiJller metric dl on T(1) is universal in the sense that it induces the same 
topology as de to each T(G). Moreover, d l <  de and, according to Strebel [77], in 
general, dl < de. The Weil-Petersson metric is non-complete, while the Teichmtiller 
metric is complete. In particular, the two metrics are not equivalent. Indeed, there is no 
Riemannian metric corresponding to the Teichmtiller metric, so that it does not provide 
an answer to the item ( 1 ) in the physicists' wish-list above. 

The introduction of DiffS 1 in string theory was originally motivated as a globalization 
of the work of Frenkel, Garland, and Zuckerman [ 31 ], who gave the conditions for the 
consistency of string theory in terms of a certain Lie algebra cohomology of vector 
fields of the circle. The algebraic approach to string theory is a vast topic which is 
beyond the scope of this survey. Let us mention, though, that the need to understand 
better also the algebraic relationship between Polyakov's perturbative approach and the 
non-perturbative geometric quantization approach has been emphatically expressed by 
Manin [51 ]. 

6. The tangent space of T(1) 

In order to do differential geometry on T(1),  we first need to describe its tangent 
space in the various models. 

6.1. Tangent space to the real-analytic model 

Since T ( I )  is a homogeneous space (according to the model (a))  for which the 
right translation by any fixed quasisymmetric homeomorphism acts as a biholomorphic 
automorphism, it is enough in all that follows to restrict attention to the tangent space 
at a single point of T(1) ,  the origin, or, the class of the identity homeomorphism. 



O. Pekonen/Journal of  Geometry and Physics 15 (1995) 227-251 241 

Given any # E L°° (A ) ,  the tangent vector d0~(/z) is represented by the real vector 

field V[/z] = w[Ix]O/Oz on the circle that produces the one-parameter flow wtu of 
quasisymmetric homeomorphisms: 

w r y ( z )  = z + tw[/x] ( z )  + o( t )  . (6.1) 

The vector field becomes in the 0-coordinate: 

) ~ = . (  i0 0 
V[#]  = w [ / z ] ( z  Oz e )~, (6.2) 

where 

u (  eiO) _ w[/z] ( e iO) 
ieiO (6.3) 

By our normalization, u vanishes at ±1 and - i .  
As mentioned before, the Zygmund class A* (R) comprises precisely the vector fields 

for quasisymmetric flows on I~. Hence, the tangent space to the real-analytic model of 

T(1)  becomes: 

{ =° To(T(1)(a))  = u(ei°)  oV " 

(i) u : S l --, R is continuous, vanishing at ( 5 : 1 , - i ) ;  

A* } (ii) F , ( x ) = ½ ( x 2 + l )  \ x + i /  i s in  (1R) . (6.4) 

We will say that a continuous function u : S 1 --, R is in the Zygmund class A * ( S  l ) 

on the circle, if, after adding the requisite (ce iO + geiO + b) to normalize u, the function 

satisfies the conditions in (6.4). 

6.2. Tangent space to the complex-analytic model 

A tangent vector at 0 (the identity mapping) to T(1)(b) corresponds to a one- 
parameter family Ft of univalent functions (each allowing quasiconformal extension): 

Ft ( z )  = z + b l ( t )  + b2(t) b3(t) z - - ~ ÷ - - - - ~ + . - . ,  in I z [ > l ,  (6.5) 

with 

b g ( t ) = t b k ( O ) + o ( t ) ,  k = 1 , 2 , 3  . . . .  (6.6) 

The sequences {bk(0), k > 1} arising this way uniquely correspond to the tangent 

vectors. 
Applying Ahlfors' deep infinitesimal theory for solutions of the Beltrami equation 

[ l ] ,  Nag [57] was able to characterize which sequences occur in (6.5). To announce 

his result, let us expand as a Fourier series the vector field V[/z]: 

u ( e i O )  _ w[/z] ( e  iO) 
ie  iO = ak eikO . (6.7) 

k= - oo 
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Since u is real valued, one knows a-k  = ilk, k ___ 1. The coefficients ao and a:~l do not 
matter owing to the sl(2,1I~) normalization. 

Nag [57] established the following interesting identities between the coefficients ak 
in (6.7) and bk in (6.6): 

bk(o) = ia-k  = i~tk, for every k _> 2. (6.8) 

This immediately implies a precise description of the tangent space to T(1)  in the 
complex-analytic model: In (6.5) precisely those sequences (bl (0),  b2(0), b3(0) . . . .  ) 

occur for which the function 

O O  O O  

u ( e i° ) = i ~-~ bk ( O ) e ik° -- i ~--~ bk ( O ) e -ik° (6 .9)  

k=l k=l 

is in the Zygmund class on S 1 . 

7. The almost complex structure of T(1) 

The Lie algebra of the Lie group Diff(S 1) is the Lie algebra Vect(S 1 ) of smooth 

vector fields on S 1. The complexification Vectc(S 1) of Vect(S 1) is generated by the 

Fourier modes 

Ln = ein°~---O = iz n+l d n C Z (7.1) 
d z '  

with z = e iO. To Wectc (S  1 ) there does not correspond any global Lie group, yet, Neretin 
[61] has constructed a complex semigroup whose tangent cone is a convex cone in 

Vectc (S 1 ). The Lie bracket of Vectc (S 1 ) is given by the Witt law 

[ Lm, Ln] = i (n  - m)Lm+n. (7.2) 

A tangent vector to the orbit space M = D i f f ( S I ) / M 6 b ( S  l) at its origin is a linear 
combination 

"19 = ~ "tgmLm, Om = ~9-m, (7 .3)  
m~O,:~l 

where t9 = u ( O ) 0 / 0 0  is the corresponding smooth real vector field on the circle and 
the ~m are the Fourier coefficients of u(O). The Lie algebra corresponding to the three 
missing modes O-1,O0,O1, is s l (2 ;R) ,  of course. We may conjugate the series (7.3) 
by the conjugation operator J to 

- i  sgn( m ) OzL, , .  (7.4) JO= 
m#0,-t-1 

This is again a smooth vector field, but J can be applied to a much wider class: A 
classical result of Zygmund [88] says that conjugation of Fourier series preserves the 
Zygmund class A* (S 1). 
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Notice that j2 = - id .  Kerckhoff (unpublished) first pointed out the fact that the 

conjugation operation on Zygmund class vector fields on S l transmutes to the almost 

complex structure of T(1) .  Nag [57] applied the identities (6.8) to give a simple 
proof of this fact. Indeed, we need to prove that the vector field V[/~] in (6.2) is 
related to V[i#] as a pair of conjugate Fourier series. But the tangent vector repre- 

sented by # in the complex-analytic description of T(1)  corresponds to a sequence 
(bl (0) ,  b2(o), b3(0) . . . .  ), as explained above. Since the bk are holomorphic in/x, the 

tangent vector represented by iN corresponds to (ibj (0),  ib2(0), ib3(0) . . . .  ). The re- 
lation (6.8) immediately shows that the kth Fourier coefficient of V[ilx] is - i sgn(k )  
times the kth Fourier coefficient of V[/z], as required. 

8. The Bets embedding of T(1) 

To provide a system of complex coordinates for T( 1 ) Bers [ 11 ] embedded T( 1 ) as 
a holomorphically convex domain into the complex Banach space B which consists of 

all functions 4,(z ), holomorphic in the lower half-plane, L, with bounded Nehari norm 
defined by 

114,11 = ess sup 4 ly24,(z)t. (8.1) 
zcL 

In the complex-analytic model of T( 1 ), let fu  represent a point of T( 1 ). We think of 

f~' as a quasiconformal map which is univalent in L. The Bers embedding T(1)  ~ B 

is defined by 

f ~ ( z )  H S ( f U ) ( z ) ,  z C L ,  (8.2) 

where S is the Schwarzian derivative as in (1.14) which annihilates M6bius moves 

according to (1.13). 
Since an element fu  is determined by the Beltrami differential /z up to a M6bius 

move, we may think of the Bers embedding as a function of /x  as well. It then defines 

a holomorphic embedding of T(1)  into B with respect to the complex structure of the 

Beltrami differentials. 
It is an interesting problem to study the locus of T ( l )  in B in the Bers embedding. 

In particular, we may compare the locus of T(1)  to the bigger locus S in B of the 
Schwarzian derivatives of all univalent maps on L. The following facts are known: 

(i) In the Nehari norm, T(1)  contains an open ball of radius 2 and is contained in a 

closed ball of radius 6 [49, 54]. 
(ii) T(1)  is an open set in B while S is closed in B, and the closure of T ( I )  is a 

proper subset of S (Gehring [35] ). 
(iii) The interior of S is T(1)  (Gehring [36] ). 
(iv) T ( l )  is connected (Earle-Eells [29]) while S contains isolated points (Astala 

[5],  Astala-Gehring [6]) .  
(v) Suppose that h is a univalent map of L onto a simply connected domain D of 

hyperbolic type in C. Then S ( f )  is in the closure of T(1)  if and only if for each 
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K > 1 there exists a homeomorphism g of D onto a quasidisc such that for each 
disc Q in D, glQ has a K-quasiconformal extension to C (Astala and Gehring 

[7] ) .  
(vi) T ( l )  is contractible [29] but not star-shaped (Krushkal [48]) .  

Tukia [79] has shown how to embed T(1)  as a real analytic convex domain in a real 

Banach space. 

9. The K~hler structure of T(1) 

Nag and Verjovsky [59] proved that the natural inclusion 

M = Dif f ($1) /M6b(S 1 ) "--* T(1)  (9.1) 

is holomorphic. The proof amounts to showing that, if we write in (7.4) 

JO = u*( O) 0/00, (9.2) 

then u* is essentially the Hilbert transform of u; this is not very difficult. 

A more subtle result of Nag [59] endows a subspace of T(1)  with a K ~ l e r  structure 

and shows the inclusion (9.1) to be a K ~ l e r  isometry onto its image. Recall that the 

existence of a symplectic form to on M is predicted by the theory of coadjoint orbits. 
To compute it explicitly, we impose the condition d to= 0, or, equivalently, at the origin 

to( [ Lm, L,] , Lp) + to( [ Ln, Lp ], Lm) + to( [ Lp, L,,] , Ln) = 0. (9.3) 

Also, to must vanish whenever one of its arguments is Lo, L+I since these vector fields 

give the zero tangent vector to M. The conditions (7.2) and (9.3) now lead to a system 
of difference equations whose only possible solution readily yields a homogeneous 
Ki~hler form to which is given at the origin by 

to(Lm, L , ) = a ( m 3 - m ) 6 m . _ , ,  m, n E Z \ { 0 , + l } .  (9.4) 

The constant a E C \ {0} is arbitrary. 

Let v = ~-~m vmLm and w = ~ m  wmLm of the form (7.3) represent two tangent vectors 
to M at the origin. Then the K~hler metric g, whose K ~ l e r  form to was determined 
above, assigns the inner product 

o o  

g(v,w) = R e ( Z  Um-~m(m3-m)). (9.5) 
m=2 

According to standard results in harmonic analysis, the Fourier coefficients of a C k+" 
smooth function on S 1 decay at least as fast as 1In k+'. Hence, the infinite series in 
(9.5) converges absolutely whenever the vector fields v and w are C 3/2+e smooth on S 1 
for any • > 0. Zygmund class functions are not necessarily smooth at all, so that the 
series (9.5) does not yield a well-defined inner product on all of T(1) .  Claims have 
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been made, though, that even H o m e o ( S  j ) / M r b ( S  1 ) carries a K ~ l e r  structure in some 
sense [67] .  

The K~ihler structure to is universal in the sense that it is closely related to the 
Weil-Petersson K~ihler forms on each T(G) .  However, the relationship is not by simple 
restriction of  domains from the infinite-dimensional space T( 1 ) to the complex-analytic 

subspace T(G) ,  because T(G)  is transversal to the leaf M of the foliation of T(1 )  
in the following sense: Let us use the geometric definition of T ( I )  as the space of 

Mrbius-normalized quasidiscs. Bowen [ 16] proved the deep result that if G uniformizes 
a compact  Riemann surface, then every non-origin point of  T(G)  corresponds to a 

quasidisc with fractal boundary. On the other hand, the quasidiscs corresponding to 

points of  M are the ones with C ~ boundaries (Kirillov [45] ) .  Nag [59] showed that 
every non-null tangent vector to T(G)  at the origin produces a vector field on S l that 
cannot be even C 3/2+e smooth. 

Nonetheless, the expression of  the metric (9.5) is formally the same as that of  the 

Weil-Petersson metric even when it diverges, and it can be regulated as explained by 

Nag in [59].  This procedure is not entirely satisfactory from the point of  the physicists '  
wish-list, however. 

10. Curvature properties of Diff(S1)/M~b(S 1) 

Conformal field theory [44] suggests that the natural value of  the constant cr is 

ce = ~ ;  see Atiyah [8] for a purely topological derivation. This normalization is 

natural also when w is viewed as the generator of  the second Gelfand-Fuks cohomology 
H 2 (Vect °~ ( S I ); C)  (Segal [ 74 ] ). Besides being the unique symplectic form on M, the 
2-cocycle w can also be found as the unique central extension of the Lie algebra of  
vector fields on the circle. The centrally extended Lie algebra then is called the Virasoro 

algebra. It is customary to write a = ~ c  so that the Virasoro law reads as 

[ Lm, Ln] = i(n - m)Lm+n + -~2c(m 3 - m)~m,-n .  ( I0 .1 )  

Remarkably, the spectrum of  the values of  the coupling constant c admitting unitary 

representations of  the Virasoro algebra (10.1) is continuous precisely for c > 1 [38] .  
For c < 1, the spectrum consists of  the discrete series 

6 
c = 1 - k =  1 ,2 ,3  . . . .  (10.2) 

( k + 2 ) ( k +  3 ) '  

This phenomenon also shows that the value c = 1, i.e., a = ~ is critical. 
The Ricci curvature of  the K~ihler manifold M has been computed by Bowick and 

Lahiri [ 18 ]. The method of  Toeplitz operators for dealing with infinite-dimensional Ricci 
curvature was introduced by Freed [30].  Such computations are surprising because an 
infinite-dimensional trace can be performed without any regularization. For the critical 

normalization ce = ~ one obtains 

Ricci = - 2 6  × w. (10.3) 
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It is surprising to see the mysterious critical dimension D = 26 of bosonic string theory 
emerge in this context! The critical occurrence of the number 26 in two seemingly 

disparate roles must be an instance of the subtle interplay of Feynman's quantization and 
geometric quantization of bosonic string theory rather than a mere numerical coincidence, 

yet this phenomenon has never been geometrically explained. 
The Kiihler structures of the orbit space N = Dif f (S1) /S  I form a two-parameter 

family: 

w( Lm, Ln) = (am 3 + bm) 8m,-n. (10.4) 

This is non-degenerate when either a = 0, b 4~ 0, or a 4~ O, - b / a  4~ n 2 with n E Z. For 

a = 0, the infinite-dimensional trace in the Ricci curvature of (N, w) diverges, while for 

a 4= 0, it is finite and the result is 

• " 2 6  3 1 Rrnn = t - ~ m  + gm)Sm,n. (10.5) 

In fact, this computation was made earlier than that for M by several authors [17, 19- 

22, 64, 86]. Mickelsson [52, 53] extended the formula (10.5) to the case of a string 
moving on a simple compact Lie group. 

The formula (10.5) has been extended to the supersymmetric set-up as well [41, 

62, 68, 73, 85]. Then the critical dimension D = 10 of superstring theory arises in an 

equally mysterious manner. The notion of universal super-Teichmtiller space seems not 
to have been developed, though. 

11. Holomorphic embedding of T(1) in the universal Siegel disc 

Consider the Sobolev space H = H 1/2 (S l ' R ) / R  of all H 1/2 real functions on the circle 

modulo the constant maps and its complexification H c  = H1/2(S1,C)/C.  Harmonic 

analysis tells us that the Fourier series 

f ( e  i°) = ~ une in° (11.1) 
t l =  - -  O 0  

of a H 1/2 function f converges quasi-everywhere, i.e., off some set of capacity zero. We 
Q1/2 

may think of 7-(c equivalently as the space ~2 of complex sequences ( . . . .  u-3, u-2, 
u_l ,  u0 = O, ul, u2, u3 . . . .  ) such that (V/~lun} is square summable. The Hilbert trans- 
form on T(1)  given by (7.4) also extends to 7-/c. 

The fundamental orthogonal decomposition of 7-(c is given by 

H c  = w+ if3 W_,  (11.2) 

where W+ (resp. W_) consists of those functions f C 7-(c whose negative (resp. 
positive) index Fourier coefficients vanish. 

We may provide 7-/with a symplectic structure, i.e., a non-degenerate skew-symmetric 
bilinear form S whose formula is 
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1 f d io S ( f , g )  = ~ a f(ei°)-d--~g(e )dO. (11.3) 

S I 

The same formula extends to 7-/c as well. The W+, resp. W_, are the - i ,  resp. +i, 
eigenspaces of the Hilbert transform. Let f i  denote the projection of f to W±. The 
inner product on 7-/c is given by 

( f ,g)  = i S ( f  +,~,+ ) - i S ( f  _,~_ ). (11.4) 

Then QS(S 1 ) acts faithfully on 7-/. The action V of ~b E QS(S 1 ) on f E 7-/is given 
by 

' f l  V4~(I ) = f o ~ - ~--~ o~b. (11.5) 

SI 

In fact, the class QS (S 1 ) turns out to be the largest possible class of homeomorphisms 
~b : S 1 ~ S 1 for which V~ maps 7-/ to itself. Moreover, Nag and Sullivan [58] show 
that the action V preserves the canonical symplectic form S. On the other hand, up to a 
constant multiple, S turns out to be the unique M6b(S 1 )-invariant, afortiori, the unique 
QS(S I )-invariant symplectic form on 7-/. 

Hence, QS(S 1) becomes a subgroup of the group of real symplectic automor- 
phisms of the symplectic space ( ~ ,  S). Moreover, S p ( ~ ) / U ( 1 )  contains T ( I )  = 
QS(S l)/MOb(S 1) as an immersed subspace. 

A polarization of the space 7-/ with respect to S is a decomposition ~ c  = W O W 
such that the complexification of S takes zero values on arbitrary pairs from W. The 
subspace W is said to be isotropic for S. The assignment 

(wl, w2) = - i S ( ~ l ,  w2) ( 1 1.6) 

is a Hermitian inner product on W, and the decomposition is a positive polarization if 
(11.6) is positive definite. In this case, W, its conjugate W, and hence 7-(c itself, can 
be completed to Hilbert spaces with respect to the above Hermitian inner product. We 
may identify a positive polarization with the isotropic subspace W determining it. The 
canonical positive polarization is given by W+. 

Note the fundamental fact that the image under the C-linear extension of a sym- 
plectic automorphism of a positive isotropic subspace is again such a subspace. Hence, 
Sp(7-(, S) acts transitively on the space of all positive polarizations, and the stabilizer 
subgroup at W is evidently identifiable with the unitary group U(W, (., .)). It follows 
that the homogeneous space S p / U  can be identified with the family Pol(7-/) of positive 
polarizations of 7-(. Either of these spaces can be easily identified with the universal 
Siegel disc, denoted S~: 

S~ = { All bounded complex linear operators Z : W+ --~ W_ such that : 

(1) Z is symmetric w.r.t. S, S( Zv, w) = S( Zw, v); and 

(2) 1 - Z*Z is positive definite.} 
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The identification between Soo and Po l (~ )  is by associating to Z E Soo the positive 
isotropic subspace W which is the graph of the operator Z. (Clearly, the origin in Do~ 
corresponds to the canonical polarization of W+.) We have seen that the universal Siegel 
disc can be described in the following manners: 

Soo = S p / U  = Pol. (11.7) 

The positive polarizing subspace W can also be taken to be the -i-eigenspace of an 
arbitrary S-compatible almost complex structure J on 7-/. "S-compatible" means that 
J acts orthogonally with respect to S and that the inner product (., .) = S(., J ( . ) )  is 
positive definite. Thus, the set of such J's yields yet another description of Soo. We 
stress that the symplectic structure S on 7-/is completely canonical while J is not. 

The Grassmannian Gr( W+, 7-/c) consists of all subspaces of 7-/c that are of type W+. 
Clearly, Soo is embedded in Gr as a complex subspace. The symplectic form S extends 
to G r ( W + , ~ c ) .  Nag and Sullivan [58] (see also Nag [55, 56]) showed that the 
following chain of mappings consists of equivariant holomorphic symplectomorphisms: 

M ~ T(1)  -~Soo ~ Gr. (11.8) 

The problem of describing the image o f / / i n  Soo is an infinite-dimensional analogue 
of the classical Schottky problem. Nag and Sullivan [58] provided a characterization of 
the locus o f / / a s  the space of multiplication-closed polarizing subspaces W in 7-(c. This 
means that for every f ,  g C W such that the pointwise product function f g  minus its 
mean value is in 7-/c, that product is actually in the given subspace W. This condition 
has a natural interpretation in terms of Connes' non-commutative geometry [24, 25, 
58] but this would bring us too far. In view of Shiota's theorem [76], one expects a 
"Novikov conjecture", possibly in some non-commutative sense. The locus of T( 1 ) in 
Soo should be determined within Gr( W+, 7-/c) as those points W E Gr(W+, 7-/c) whose 
"tau function" [69, 75] satisfies some special conditions related to the Korteweg-de 
Vries (KdV) hierarchy of equations. That would tie in with the finite-dimensional 
Novikov conjecture. 

Such developments are beyond our scope, yet we briefly indicate how the classical 

KdV equation for a smooth function u = u(z,  t), 

O~U ~3U O3U 
at - cgz 3 +6u--,~z (11.9) 

arises in the study of M. Indeed, the Lax form of (11.9) is 

onu/ot  = 3[Pu, Hu], (11.10) 

where Hu is the Hill operator Hu = ( d / d z )  2 + u ( z )  as in (2.5) and 

4 3 Pu = gaz + UOz + azU. (11.11) 

Thus, the KdV equation can be interpreted as describing flows that correspond to isospec- 
tral deformations of the Hill operator [9, 74, 75]. 
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There seems to be emerging a fascinating interplay of Teichmtiller theory and non- 
commutative geometry which may shed new light on crucial issues of non-perturbative 
string theory. We hope that our survey will be helpful for someone who is seeking his or 
her way through the maze of existing literature before tackling the forthcoming papers 
of Connes and Sullivan [25],  Nag and Sullivan [58],  and Penner (in preparation). 
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